jueves, 28 de mayo de 2015

Física
LUZ
Se llama luz  a la parte de la radiación electromagnética que puede ser percibida por el ojo humano. En física, el término luz se usa en un sentido más amplio e incluye todo el campo de la radiación conocido como espectro electromagnético, mientras que la expresión luz visible señala específicamente la radiación en el espectro visible. La luz, como todas las radiaciones electromagnéticas, está formada por partículas elementales desprovistas de masa denominadas fotones, cuyas propiedades de acuerdo con la dualidad onda partícula explican las características de su comportamiento físico.
La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones.


                 

Rayo de luz solar dispersado por partículas de polvo en el cañón del Antílope, en Estados Unidos.



VELOCIDAD FINITA

Se ha demostrado teórica y experimentalmente que la luz tiene una velocidad finita. La primera medición con éxito fue hecha por el astrónomo danés Ole Roemer en 1676 y desde entonces numerosos experimentos han mejorado la precisión con la que se conoce el dato. Actualmente el valor exacto aceptado para la velocidad de la luz en el vacío es de 299 792 458 m/s.1
La velocidad de la luz al propagarse a través de la materia es menor que a través del vacío y depende de las propiedades dieléctricas del medio y de la energía de la luz. La relación entre la velocidad de la luz en el vacío y en un medio se denomina índice de refracción del medio: n = \frac{c}{v}

La línea amarilla muestra el tiempo que tarda la luz en recorrer el espacio entre la Tierra y la Luna, alrededor de 1,26 segundos.


REFRACCIÓN

La refracción es el variación brusca de dirección que sufre la luz al cambiar de medio. Este fenómeno se debe al hecho de que la luz se propaga a diferentes velocidades según el medio por el que viaja. El cambio de dirección es mayor cuanto mayor es el cambio de velocidad, ya que la luz recorre mayor distancia en su desplazamiento por el medio en que va más rápido. Laley de Snell relaciona el cambio de ángulo con el cambio de velocidad por medio de los índices de refracción de los medios.
Como la refracción depende de la energía de la luz, cuando se hace pasar luz blanca o policromática a través de un medio con caras no paralelas, como un prisma, se produce la separación de la luz en sus diferentes componentes (colores) según su energía, en un fenómeno denominado dispersión refractiva. Si el medio tiene las caras paralelas, la luz se vuelve a recomponer al salir de él.
Ejemplos muy comunes de la refracción es la ruptura aparente que se ve en un lápiz al introducirlo en agua o el arcoíris.


Ejemplo de la refracción. La pajita parece partida, por la refracción de la luz al paso desde el líquido al aire.




PROPAGACION Y DIFRACCIÓN

Una de las propiedades de la luz más evidentes a simple vista es que se propaga en línea recta. Lo podemos ver, por ejemplo, en la propagación de un rayo de luz a través de ambientes polvorientos o de atmósferas saturadas. La óptica geométrica parte de esta premisa para predecir la posición de la luz, en un determinado momento, a lo largo de su transmisión.

Luz en la persiana.
De la propagación de la luz y su encuentro con objetos surgen las sombras. Si interponemos un cuerpo opaco en el camino de la luz y a continuación una pantalla, obtendremos sobre ella la sombra del cuerpo. Si el origen de la luz o foco se encuentra lejos del cuerpo, de tal forma que, relativamente, sea más pequeño que el cuerpo, se producirá una sombra definida. Si se acerca el foco al cuerpo surgirá una sombra en la que se distinguen una región más clara denominada penumbra y otra más oscura denominada umbra.
Sin embargo, la luz no siempre se propaga en línea recta. Cuando la luz atraviesa un obstáculo puntiagudo o una abertura estrecha, el rayo se curva ligeramente. Este fenómeno, denominado difracción, es el responsable de que al mirar a través de un agujero muy pequeño todo se vea distorsionado o de que los telescopios y microscopios tengan un número de aumentos máximo limitado.


REFLEXIÓN

La reflexión es el cambio de dirección de una onda, que, al entrar en contacto con la superficie de separación entre dos medios cambiantes, regresa al punto donde se originó. Ejemplos comunes son la reflexión de la luz, el sonido y las ondas en el agua.
Reflejo del Monte Hood en el lago Trillium.


REFLEXIÓN DE LA LUZ


La luz es una manifestación de energía. Gracias a ella las imágenes pueden ser reflejadas en un espejo, en la superficie del agua o un suelo muy brillante. Esto se debe a un fenómeno llamado reflexión de la luz. La reflexión ocurre cuando los rayos de luz que inciden en una superficie chocan en ella, se desvían y regresan al medio que salieron formando un ángulo igual al de la luz incidente, muy distinta a la refracción.

Reflejo de unas rocas en el mar.


Es el cambio de dirección, en el mismo medio, que experimenta un rayo luminoso al incidir oblicuamente sobre una superficie. Para este caso las leyes de la reflexión son las siguientes:
1a. ley: El rayo incidente, el rayo reflejado y la normal, se encuentran en un mismo plano.
2a. ley: El ángulo de incidencia es igual al ángulo de reflexión.
θi = θr



Reflexión especular




La reflexión especular se produce cuando un rayo de luz incide sobre una superficie pulida (espejo) y cambia su dirección sin cambiar el medio por donde se propaga.

Reflexión difusa


Cuando un rayo de luz incide sobre una superficie "no pulida", los rayos no se reflejan en ninguna dirección, es decir se difunden. Esto se puede producir por ejemplo en la madera.

Reflejo sobre una burbuja de jabón.




ESPEJOS

Un espejo   es una superficie pulida en la que, después de incidir, la luz se refleja siguiendo las leyes de la reflexión.
El más sencillo es el espejo plano. En este último, un haz de rayos de luz paralelos puede cambiar de dirección completamente en conjunto y continuar siendo un haz de rayos paralelos, pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real. La imagen resulta derecha pero invertida en el eje normal al espejo.
También existen espejos curvos que pueden ser cóncavos o convexos. En un espejo cóncavo cuya superficie forma un paraboloide de revolución, todos los rayos que inciden paralelos al eje del espejo, se reflejan pasando por el foco, y los que inciden pasando por el foco, se reflejan paralelos al eje.
Los espejos son objetos que reflejan casi toda la luz que choca contra su superficie debido a este fenómeno podemos observar nuestra imagen en ellos. Los espejos en realidad son cristales que contienen detrás una capa de aluminio (o de otro material, pero es más fácil de aluminio) y entonces como no puedes ver a través la imagen se ve reflejada como en la primera foto.
Vasija reflejada en un espejo.



FÓRMULAS FÍSICAS


Para una imagen formada por un espejo parabólico (o esférico de pequeña abertura, donde sea válida la aproximación paraxial), se cumple que: 
\frac{1}{f} = \frac{1}{s} + \frac{1}{{s'}}
 , en la que f es la distancia del foco al espejo, s la distancia del objeto al espejo, y s' la distancia de la imagen formada al espejo, se lee:
«La inversa de la distancia focal es igual a la suma de la inversa de la distancia del objeto al espejo con la inversa de la distancia de la imagen al espejo» y  m = \frac{h'}{h} =  - \frac{s'}{s}
 , en la que m es la magnificación o agrandamiento lateral.

Esquema de inversión de la imagen.


PROBLEMAS RESUELTOS


1.-Un rayo de luz que se propaga por el aire (n = 1) incide sobre un medio de índice de refracción 1,22. Si la suma de los ángulos de incidencia y refracción es 90°, calcula el valor de estos ángulos (incidencia y refracción).

Por la ley de Snell,  y sustituyendo, 
y además  y sustituyendo, 
y operando,  y 




2.-Un rayo de luz incide desde el aire (n = 1) sobre una lámina plana de vidrio con un ángulo de 57º. Parte de la energía se refleja y parte se transmite al vidrio. El rayo reflejado y el rayo refractado forman entre si un ángulo de 90º. ¿Cuál es el índice de refracción de la lámina de vidrio?

En la figura, 
Por la ley de Snell,  y sustituyendo,  y despejando, 


3.-Un rayo de luz se propaga por un vidrio de índice de refracción 1,52 y llega a la superficie de separación vidrio-agua (índice de refracción del agua = 1,33 ) con un ángulo de incidencia de 30º. Dibuja los rayos incidente y refractado y señala los ángulos correspondientes.







Por la ley de Snell, 
y sustituyendo, 





LUZ


La luz es una forma de energía que emiten los cuerpos luminosos y que percibimos mediante el sentido de la vista. La luz es una refracción que se propaga en formas de ondas, aunque también se propaga en línea recta en forma de corpúsculos.

                                                                Emanación de luz


La luz emitida por las fuentes luminosas es capaz de viajar a través de materia o en ausencia de ella, aunque no todos los medios permiten que la luz se propague a su través.
Desde este punto de vista, las diferentes sustancias materiales se pueden clasificar en opacastraslúcidas y transparentes. Aunque la luz es incapaz de traspasar las opacas, puede atravesar las otras. Las sustancias transparentes tienen, además, la propiedad de que la luz sigue en su interior trayectorias definidas. Éste es el caso del agua, el vidrio o el aire. En cambio, en las traslúcidas la luz se dispersa, lo que da lugar a que a través de ellas no se puedan ver las imágenes con nitidez. El papel vegetal o el cristal esmerilado constituyen algunos ejemplos de objetos traslúcidos.
En un medio que además de ser transparente sea homogéneo, es decir, que mantenga propiedades idénticas en cualquier punto del mismo,la luz se propaga en línea recta. Esta característica, conocida desde la antigüedad, constituye una ley fundamental de la óptica geométrica.

Modelo de la composición de la luz de Christiaan Huyggens
Dado que la luz se propaga en línea recta, para estudiar los fenómenos ópticos de forma sencilla, se acude a algunas simplificaciones útiles. Así, las fuentes luminosas se consideran puntuales, esto es, como si estuvieran concentradas en un punto, del cual emergen rayos de luz o líneas rectas que representan las direcciones de propagación. Un conjunto de rayos que parten de una misma fuente se denomina haz. Cuando la fuente se encuentra muy alejada del punto de observación, a efectos prácticos, los haces se consideran formados por rayos paralelos. Si por el contrario la fuente está próxima la forma del haz es cónica.
La naturaleza de la luz ha sido objeto de la atención de filósofos y científicos desde tiempos remotos. Ya en la antigua Grecia se conocían y se manejaban fenómenos y características de la luz tales como la reflexión, la refracción y el carácter rectilíneo de su propagación, entre otros. No es de extrañar entonces que la pregunta: ¿qué es la luz?, se planteara como una exigencia de un conocimiento más profundo. Los griegos primero y los árabes después sostuvieron que la luz es una emanación del ojo que se proyecta sobre el objeto, se refleja en él y produce la visión. El ojo sería, pues, el emisor y a la vez el receptor de los rayos luminosos.
A partir de esa primera explicación conocida, el desarrollo histórico de las ideas sobre la naturaleza de la luz constituye un ejemplo de cómo evolucionan las teorías y los modelos científicos a medida que, por una parte, se consolida el concepto de ciencia y, por otra, se obtienen nuevos datos experimentales que ponen a prueba las ideas disponibles.
REFACCIÓN

La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Solo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si estos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad de propagación de la onda señalada.
Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total. Aunque el fenómeno de la refracción se observa frecuentemente en ondas electromagnéticas como la luz, el concepto es aplicable a cualquier tipo de onda.

Refracción de la luz en diversos contenedores.

Se produce cuando la luz pasa de un medio de propagación a otro con una densidad óptica diferente, sufriendo un cambio de rapidez y un cambio de dirección si no incide perpendicularmente en la superficie. Esta desviación en la dirección de propagación se explica por medio de la ley de Snell. Esta ley, así como la refracción en medios no homogéneos, son consecuencia del principio de Fermat, que indica que la luz se propaga entre dos puntos siguiendo la trayectoria de recorrido óptico de menor tiempo.

Lápiz "quebrado" debido a la refracción.
Por otro lado, la velocidad de la penetración de la luz en un medio distinto del vacío está en relación con la longitud de la onda y, cuando un haz de luz blanca pasa de un medio a otro, cada color sufre una ligera desviación. Este fenómeno es conocido como dispersión de la luz. Por ejemplo, al llegar a un medio más denso, las ondas más cortas pierden velocidad sobre las largas (p. ej., cuando la luz blanca atraviesa un prisma). Las longitudes de onda corta son hasta cuatro veces más dispersadas que las largas lo cual explica que el cielo se vea azulado, ya que para esa gama de colores el índice de refracción es mayor y se dispersa más.
En la refracción se cumplen las leyes deducidas por Huygens que rigen todo el movimiento ondulatorio:
  • El rayo incidente, el reflejado y el refractado se encuentran en el mismo plano.
  • Los ángulos de incidencia y reflexión son iguales, entendiendo por tales los que forman respectivamente el rayo incidente y el reflejado con la perpendicular (llamada Normal) a la superficie de separación trazada en el punto de incidencia.
La velocidad de la luz depende del medio por el que viaje, por lo que es más lenta cuanto más denso sea el material y viceversa. Por ello, cuando la luz pasa de un medio menos denso (aire) a otro más denso (cristal), el rayo de luz es refractado acercándose a la normal y por tanto, el ángulo de refracción será más pequeño que el ángulo de incidencia. Del mismo modo, si el rayo de luz pasa de un medio más denso a uno menos denso, será refractado alejándose de la normal y, por tanto, el ángulo de incidencia será menor que el de refracción. Así podemos decir que la refracción es el cambio de dirección de la propagación que experimenta la luz al pasar de un medio a otro.
Refracción -Explicación-



LENTES


Las lentes con superficies de radios de curvatura pequeños tienen distancias focales cortas y las lentes con superficie de radios de curvaturas grande tienen distancias focales largas. Una lente con dos superficies convexas siempre refractará los rayos paralelos al eje óptico de forma que converjan en un foco situado en el lado de la lente opuesto al objeto.

Tipos principales de lentes.
Una superficie de lente cóncava desvía los rayos incidentes paralelos al eje de forma divergente; a no ser que la segunda superficie sea convexa y tenga una curvatura mayor que la primera, los rayos divergen al salir de la lente, y parecen provenir de un punto situado en el mismo lado de la lente que el objeto. Estas lentes sólo forman imágenes virtuales, reducidas y no invertidas.
Si la distancia del objeto es mayor que la distancia focal, una lente convergente forma una imagen real e invertida. Si el objeto está lo bastante alejado, la imagen será más pequeña que el objeto. En ese caso, el observador estará utilizando la lente como una lupa o microscopio simple.
El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión.

CLASIFICACIÓN DE LAS LENTES

a) Lentes convergentes o positivos, son más gruesas por su parte central y más estrechas en los bordes.
b) Lentes divergentes o negativos son más gruesas por los bordes y presentan una estrechez muy pronunciada en el centro

El foco F y la distancia focal f (positiva) de una lente convergente.


El foco F y la distancia focal f (negativa) de una lente divergente.


El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión.
La relación de estos dos ángulos es la potencia de aumento de la lente. Una lente con una distancia focal más corta crearía una imagen virtual que formaría un ángulo mayor, por lo que su potencia de aumento sería mayor.
La potencia de aumento de un sistema óptico indica cuánto parece acercar el objeto al ojo, y es diferente del aumento lateral de una cámara o telescopio, por ejemplo, donde la relación entre las dimensiones reales de la imagen real y las del objeto aumenta según aumenta la distancia focal.
La cantidad de luz que puede admitir una lente aumenta con su diámetro. Como la superficie que ocupa una imagen es proporcional al cuadrado de la distancia focal de la lente, la intensidad luminosa de la superficie de la imagen es directamente proporcional al diámetro de la lente e inversamente proporcional al cuadrado de la distancia focal.

Por ejemplo: la imagen producida por una lente de 3 cm de diámetro y una distancia focal de 20 cm sería cuatro veces menos luminosa que la formada por una lente del mismo diámetro con una distancia focal de 10 cm. La relación entre la distancia focal y el diámetro efectivo de una lente es su relación focal, llamada también número f. Su inversa se conoce como abertura relativa. Dos lentes con la misma abertura relativa tienen la misma luminosidad, independientemente de sus diámetros y distancias focales.

EJERCICIOS RESUELTOS




1.-Un objeto se encuentra a 60 cm de un espejo concavo de 40cm de radio 
a. Calcular la imagen
b. Calcular la posicion de la imagen
c. Construir grafica

Solucion!!

a.

1/60 +1/s´ =2/40
1/s´:2/40 - 1/60 =120-40/2400 = 80/2400 =8/240 

s´= 240/8 = 30 cm 

b.

a=y´/y=s´/-(s´)/s
y´/4 =-(30cm)/60 y´= -4*30/60 = -2cm
c. En la parte inferrior se puede4 observar la grafica




2
* Sea un espejo concavo de R=20 cm. Se coloca un objeto de 2 cm de altura a 30 cm del espejo ¿En donde estara su imagen y cual sera su tamaño?
-grafica y caracteristicas

SOLUCION

EN DONDE ESTARA SU IMAGEN
1/S`= 1/10 - 1/30= 30-10/300=
300/20 S` =15cm


CUAL SERA SU TAMAÑO
A=Y`/Y=-(S`)/S

y`/2= -(15)/30 = y'=2 * (-15/30)

y'= -1cm


CARACTERISTICAS
Y' menor que Y
Y' es inversa
Y' es real

GRAFICA
la grafica la puede observar en la parte inferior

3.ESPEJO CONVEXO
Sea un espejo convexo de r=40cm.Se coloca un objeto de 4 cm de altura a 60cm del espejo ¿en donde estara su imagen?¿cual sera su altura?
R=-40cm f=-20cm y=4cm s=60cm s'= -15cm y'= 1cm
S'=
1/60 +1/S'=1/-20
1/S'=1/-20 - 1/60
60+20/-1200
80/-1200
8/120
S'=120/8 = -15cm
Y'=
Y'/4= -(-15)/60
Y'=4*15/60= 1cm
la grafica la puede observar en la pate inferior

4.LENTE CONVERGENTE
Un objeto de altura 2 cm se encuentra a 60 cm de una lente convergente de distancia focal 20 cm.Hallar
  1. posicion de la inagen S'
  2. tamaño de la imagen Y'
  3. grafica
POSICION DE LA IMAGEN
1/60 +1/S'= 1/20
1/S'=1/20 - 1/60
1/S'=60 - 20/1200
S'=1200/40
S'= 30 cm - REAL
TAMAÑO DE LA IMAGEN
Y'/2=-(30)/60
Y'=-3/6*2
Y'= 1cm
CARACTERISTICAS
  • Y' es menor que Y
  • Y' es real
  • Y' inversa


CORRIENTE ELÉCTRICA

La corriente eléctrica o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material.1 Se debe al movimiento de las cargas (normalmente electrones) en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en elelectroimán.

El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor por el que circula la corriente que se desea medir.



CONDUCCIÓN ELÉCTRICA
Un material conductor posee gran cantidad de electrones libres, por lo que es posible el paso de la electricidad a través del mismo. Los electrones libres, aunque existen en el material, no se puede decir que pertenezcan a algún átomo determinado.
Una corriente de electricidad existe en un lugar cuando una carga neta se transporta desde ese lugar a otro en dicha región. Supongamos que la carga se mueve a través de un alambre. Si la carga q se transporta a través de una sección transversal dada del alambre, en un tiempo t, entonces la intensidad de corriente I, a través del alambre es:
I = \frac{q}{t} \,\!
Aquí q está dada en culombiost en segundos, e I en amperios. Por lo cual, la equivalencia es:
1 A = 1 \frac{C}{s} \,\!
Una característica de los electrones libres es que, incluso sin aplicarles un campo eléctrico desde afuera, se mueven a través del objeto de forma aleatoria debido a la energía calórica. En el caso de que no hayan aplicado ningún campo eléctrico, cumplen con la regla de que la media de estos movimientos aleatorios dentro del objeto es igual a cero. Esto es: dado un plano irreal trazado a través del objeto, si sumamos las cargas (electrones) que atraviesan dicho plano en un sentido, y sustraemos las cargas que lo recorren en sentido inverso, estas cantidades se anulan.
Cuando se aplica una fuente de tensión externa (como, por ejemplo, una batería) a los extremos de un material conductor, se está aplicando un campo eléctrico sobre los electrones libres. Este campo provoca el movimiento de los mismos en dirección al terminal positivo del material (los electrones son atraídos [tomados] por el terminal positivo y rechazados [inyectados] por el negativo). Es decir, los electrones libres son los portadores de la corriente eléctrica en los materiales conductores.
Si la intensidad es constante en el tiempo, se dice que la corriente es continua; en caso contrario, se llama variable. Si no se produce almacenamiento ni disminución de carga en ningún punto del conductor, la corriente es estacionaria.
Para obtener una corriente de 1 amperio, es necesario que 1 culombio de carga eléctrica por segundo esté atravesando un plano imaginario trazado en el material conductor.
El valor I de la intensidad instantánea será:
I = \frac{dq}{dt}
Si la intensidad permanece constante, en cuyo caso se denota Im, utilizando incrementos finitos de tiempo se puede definir como:
I_m = \frac{\Delta q}{\Delta t}
Si la intensidad es variable la fórmula anterior da el valor medio de la intensidad en el intervalo de tiempo considerado.
Según la ley de Ohm, la intensidad de la corriente es igual a la tensión (o voltaje) dividido por la resistencia que oponen los cuerpos:
 I = \frac{V}{R}
Haciendo referencia a la potencia, la intensidad equivale a la raíz cuadrada de la potencia dividida por la resistencia. En un circuito que contenga varios generadores y receptores, la intensidad es igual a:
I= \frac{\Sigma\ \mathcal{E} - \Sigma\ \mathcal{E}'}{\Sigma\ R + \Sigma\ r + \Sigma\ r'}
donde \Sigma\epsilon es el sumatorio de las fuerzas electromotrices del circuito, \Sigma\epsilon ' es la suma de todas la fuerzas contraelectromotrices, \Sigma R es la resistencia equivalente del circuito, \Sigma r es la suma de las resistencias internas de los generadores y \Sigma r' es el sumatorio de las resistencias internas de los receptores.

Intensidad de corriente en un elemento de volumen:  dI = n\cdot q\cdot dS\cdot v , , donde encontramos n como el número de cargas portadoras por unidad de volumen dV; q refiriéndose a la carga del portador; v la velocidad del portador y finalmente dS como el área de la sección del elemento de volumen de conductor.




CORRIENTE DIRECTA

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.


Fuentes suministradoras de corriente directa o continua. A la izquierda, una batería de las comúnmente utilizada en los coches y todo tipo de vehículo motorizado. A la derecha, pilas de amplio uso, lo mismo en linternas que en aparatos y dispositivos eléctricos y electrónicos.
Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.


El movimiento de las cargas eléctricas se asemeja al de las moléculas de un líquido, cuando al ser  impulsadas por una bomba circulan a través de la tubería de un circuito hidráulico cerrado.

Las cargas eléctricas se pueden comparar con el líquido contenido en la tubería de una instalación hidráulica. Si la función de una bomba hidráulica es poner en movimiento el líquido contenido en una tubería, la función de la tensión o voltaje que proporciona la fuente de fuerza electromotriz (FEM) es, precisamente, bombear o poner en movimiento las cargas contenidas en el cable conductor del circuito eléctrico. Los elementos o materiales que mejor permiten el flujo de cargas eléctricas son los metales y reciben el nombre de “conductores”.











MALLAS Y NODOS

Una rama es un solo elemento, ya sea si este es activo o pasivo. En otras palabras, una rama representa a cualquier elemento de dos terminales.

Un nodo es un punto de conexión entre dos o más ramas. Comúnmente un nodo es representado con un punto en un circuito. Si un cortocircuito conecta a dos nodos, estos son vistos como un solo nodo.

Una malla o lazo es cualquier trayectoria cerrada en un circuito. Un lazo inicia en un nodo, pasa por un conjunto de nodos y retorna al nodo inicial sin pasar por ningún nodo más de una vez.


Figura 1. Circuito con nodos, ramas y mallas.


Se dice que un lazo es independiente si contiene al menos una rama que no forma parte de ningún otro lazo independiente. Los lazos o trayectorias independientes dan por resultado conjuntos independientes de ecuaciones.


Una red con b ramas, n nodos y l lazos independientes satisface el teorema fundamental de la topología de redes:



CONEXIÓN DE ELEMENTOS



Dos elementos están en serie si comparten exclusivamente un solo nodo y conducen en consecuencia la misma corriente. La conexión serie consta de elementos conectados secuencialmente terminal con terminal.



Figura 2. Conexión en serie en un circuito.


Dos o más elementos están en paralelo si están conectados a los dos mismos nodos y tienen en consecuencia la misma tensión entre sus terminales. La conexión en paralelo consta de elementos conectados al mismo par de terminales.

Sin embargo hay conexiones en donde no se distingue si el elemento esta en serie o en paralelo.

Figura 3. Conexión en paralelo en un circuito.






CORRIENTE ALTERNA





Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente.
La forma de oscilación de la corriente alterna y directa comúnmente utilizada es la oscilación senoidal con la que se consigue una transmisión más eficiente de la energía, a tal punto que al hablar de corriente alterna se sobrentiende que se refiere a lacorriente alterna senoidal.
Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Figura 1Forma sinusoidal.

Una señal senoidal o sinusoidal, a(t)tensiónv(t), o corrientei(t), se puede expresar matemáticamente según sus parámetros característicos (figura 2), como una función del tiempo por medio de la siguiente ecuación:

a(t)=A_0 \cdot \sin(\omega t + \beta)
donde
A_0 es la amplitud en voltios o amperios (también llamado valor máximo o de pico),
\omega la pulsación en radianes/segundo,
t el tiempo en segundos, y
\beta el ángulo de fase inicial en radianes.
Dado que la velocidad angular es más interesante para matemáticos que para ingenieros, la fórmula anterior se suele expresar como:

a(t)=A_0 \cdot \sin(2 \pi f t + \beta)
donde f es la frecuencia en hercios (Hz) y equivale a la inversa del período f=\frac{1}{T}. Los valores más empleados en la distribución son 50 Hz y 60 Hz.


Figura 2: Parámetros característicos de una oscilación sinusoidal.

CIRCUITO R.L


Un circuito RL es un circuito eléctrico que contiene una resistencia y una bobina en serie. Se dice que la bobina se opone transitoriamente al establecimiento de una corriente en el circuito.
La ecuación diferencial que rige el circuito es la siguiente:

Circuito RL en serie.
U = L\frac{di}{dt}+R_t.i
Donde:


La solución general, asociada a la condición inicial i_{bobina}(t=0) = 0, es:
i_{bobina} = \frac{U}{R_t}(1 - e^{-\frac{t}{\tau}})
\tau = \frac{L}{R_t}
Dónde:
La constante de tiempo \tau caracteriza la « duración » del régimen transitorio. Así, la corriente permanente del circuito se establece a 99% después de una duración de 5 \tau.
Cuando la corriente se convierte en permanente, la ecuación se simplifica en U = R_t.i, ya que L\frac{di}{dt} = 0 .

CIRCUITOS R-C

Un circuito RC es un circuito compuesto de resistencias y condensadores alimentados por una fuente eléctrica. Un circuito RC de primer orden está compuesto de un resistor y un condensador y es la forma más simple de un circuito RC. Los circuitos RC pueden usarse para filtrar una señal, al bloquear ciertas frecuencias y dejar pasar otras. Los filtros RC más comunes son el filtro paso altofiltro paso bajofiltro paso banda, y el filtro elimina banda. Entre las características de los circuitos RC está la propiedad de ser sistemas lineales e invariantes en el tiempo; reciben el nombre de filtros debido a que son capaces de filtrar señales eléctricas de acuerdo a su frecuencia.
En la configuración de paso bajo la señal de salida del circuito se coge en bornes del condensador, estando este conectado en serie con la resistencia. En cambio en la configuración de paso alto la tensión de salida es la caída de tensión en la resistencia.

Este mismo circuito tiene además una utilidad de regulación de tensión, y en tal caso se encuentran configuraciones en paralelo de ambos, la resistencia y el condensador, o alternativamente, como limitador de subidas y bajas bruscas de tensión con una configuración de ambos componentes en serie. Un ejemplo de esto es el circuito Snubber.

Circuito RC en configuración paso bajo.

l sistema reaccionará de distinta manera de acuerdo a las excitaciones entrantes, como ejemplo, podemos representar la respuesta a la función escalón o la función de salto. La tensión originalmente desde el tiempo 0 subirá hasta que tenga la misma que la fuente, es decir, U_{\rm max}. La corriente entrará en el condensador hasta que entre las placas ya no puedan almacenar más carga por estar en equilibrio electrostático (es decir que tengan la misma tensión que la fuente). De esta forma una placa quedará con carga positiva y la otra con carga negativa, pues esta última tendrá un exceso de electrones.

El tiempo de carga del circuito es proporcional a la magnitud de la resistencia eléctrica R y la capacidad C del condensador. El producto de la resistencia por la capacidad se llama constante de tiempo del circuito y tiene un papel muy importante en el comportamiento de este. \tau.

\tau = R \cdot C \,

Teóricamente este proceso es infinitamente largo, hasta que U(t)=Umax. En la práctica se considera que el tiempo de carga tL se mide cuando el condensador se encuentra aproximadamente en la tensión a cargar (más del 99% de ésta), es decir, aproximadamente 5 veces su constante de tiempo.

t_{L} = 5 \cdot \tau \,

La constante de tiempo τ marca el tiempo en el que la curva tangente en el inicio de la carga marca en intersección con la línea de máxima tensión la constante de tiempo τ. Este tiempo sería el tiempo en el que el condensador alcanzaría su tensión máxima si es que la corriente entrante fuera constante. En la realidad, la corriente con una fuente de tensión constante tendrá un carácter exponencial, igual que la tensión en el condensador.

La máxima corriente I_{\rm max} fluye cuando el tiempo es inicial(es decir t=0). Esto es debido que el condensador está descargado, y la corriente que fluye se calcula fácilmente a través de la ley de Ohm, con:

I_{\rm max} = \frac{U_{\rm max}}{R} \,


Circuito RC (en serie).


CIRCUITOS R-L-C

En electrodinámica un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y un condensador (capacitancia).
Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describen generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primer orden).
Con ayuda de un generador de señales, es posible inyectar en el circuito oscilaciones y observar en algunos casos el fenómeno de resonancia, caracterizado por un aumento de la corriente (ya que la señal de entrada elegida corresponde a la pulsación propia del circuito, calculable a partir de la ecuación diferencial que lo rige).

Circuito sometido a un escalón de tensión[editar]

Si un circuito RLC en serie es sometido a un escalón de tensión E \, , la ley de las mallas impone la relación:
E = u_C + u_L + u_R = u_C + L \frac{di}{dt} + R_ti
Introduciendo la relación característica de un condensador:
 i_C = i = C \frac{du_C}{dt}
Se obtiene la ecuación diferencial de segundo orden:
E = u_C +  LC \frac{d^2u_C}{dt^2} + R_tC \frac{du_C}{dt}




Circuito RLC en serie.
Donde:
En el caso de un régimen sin pérdidas, esto es para R_t = 0 \, , se obtiene una solución de la forma:
u_c = E \cos \left( \frac{2 \pi t}{T_0} + \varphi \right)
 T_0 = 2\pi \sqrt{LC}
Donde:
  • T0 el periodo de oscilación, en segundos;
  • φ la fase en el origen (lo más habitual es elegirla para que φ = 0)
Lo que resulta:
 f_0 = \frac{1}{2\pi \sqrt{LC}}
Donde f_0 es la frecuencia de resonancia, en hercios (Hz).

Circuitos sometidos a una tensión sinusoidal

La transformación compleja aplicada a las diferentes tensiones permite escribir la ley de las mallas bajo la forma siguiente:
\underline {U_G} = \underline {U_C} +\underline {U_L} +\underline {U_R}
siendo, introduciendo las impedancias complejas:
\underline {U_G} = - \frac{j}{C \omega} \underline I + j L \omega \underline I + R_{t} \underline I = \bigg[ R_t + j \frac{LC \omega^2 - 1}{C \omega} \bigg]  \underline I
La frecuencia angular de resonancia en intensidad de este circuito ω0 es dada por:
\omega_0= \frac{1}{\sqrt{LC}}
Para esta frecuencia la relación de arriba se convierte en:
\underline {U_G} = \underline {U_R} = R_t \underline I
y se obtiene: \underline {U_L} = - \underline {U_C} = \frac{j}{R_t} \sqrt{\frac{L}{C}} \underline {U_G}


PROBLEMAS RESUELTOS

ejercicios circuitos corriente alterna 2

ejercicios circuitos corriente alterna









CUANTOS

En física, el término cuanto o cuantio (del latín quantum, plural quanta, que significa cantidad) denota en la física cuántica tanto el valor mínimo que puede tomar una determinada magnitud en un sistema físico, como la mínima variación posible de este parámetro al pasar de un estado discreto a otro.1 Se habla de que una determinada magnitud esta cuantizada según el valor de cuanto. Es decir, el cuanto es una proporción determinada por la magnitud dada.
Un ejemplo del modo en que algunas cantidades relevantes de un sistema físico están cuantizadas se encuentra en el caso de la carga eléctrica de un cuerpo, que sólo puede tomar un valor que sea un múltiplo entero de la carga del electrón. En la moderna teoría cuántica aunque se sigue hablando de cuantización el término cuanto ha caído en desuso. El hecho de que las magnitudes estén cuantizadas se considera ahora un hecho secundario y menos definitorio de las características esenciales de la teoría.
En informática, un cuanto de tiempo es un pequeño intervalo de tiempo que se asigna a un proceso para que ejecute sus instrucciones. El cuanto es determinado por elplanificador de procesos utilizando algún algoritmo de planificación.

En un gas, a determinada temperatura, unas moléculas se mueven muy lentamente y otras con gran celeridad: sin embargo, la energía media de todas las moléculas en movimiento depende exclusivamente de la temperatura y de la presión a que dicho gas esté sometido si el volumen es constante. Max Planck fue uno de los muchos científicos que trataron de aplicar los principios de la termodinámica a las radiaciones.
MAX PLANCKPara fines del siglo XIX, se sabía que la radiación de cuerpo negro se debía a las oscilaciones de las partículas cargadas de la superficie de estos cuerpos. Sin embargo, a partir del electromagnetismo clásico era imposible deducir los espectros y las leyes experimentales de Stefan-Boltzmann y de Wien. La Física clásica había llegado a un límite que no podría superar.
Un científico alemán llamado Max Planck (1858-1947) fue el responsable de introducir una innovación que cambiaría para siempre el rumbo de la Física.
Probando distintas funciones y haciendo infinidad de cálculos, Planck había encontrado (sin deducirla de principios de la Física) una fórmula que describía muy bien los espectros experimentales de los
EL CUANTO DE ENERGIA - FISICA CUANTICA
Comportamiento encontrado por Planck para la emisión de un cuerpo negro P(µ,T) es la potencia
emitida y µ  es la longitud de onda
cuerpos negros. Pero encontrar la forma funcional de una relación no significa explicar por qué resulta así. Esta fórmula se resistía a ser deducida de los principios clásicos. Entonces Planck, sin demasiado convencimiento, se vio obligado a introducir un postulado que no tenía, en principio, ninguna justificación, pero que le permitía predecir perfectamente los espectros de radiación que la naturaleza mostraba. Era el siguiente:
Los osciladores microscópicos responsables de la emisión electromagnética no pueden emitir o absorber cualquier valor de energía. Si el oscilador tiene frecuencia y, sólo emitirá o absorberá múltiplos enteros del cuanto de energía E = h . v (donde h es la constante de Planck).
(Nota: la letra v es griega y se la pronuncia nu)
El valor de h es muy pequeño, 6,63. 1O34 J . s, y resultó ser una constante universal, fundamental dentro de la teoría cuántica.
Que la energía estuviera cuantízada, que no fuera continua sino discreta, era tan absurdo como suponer que cuando una piedra cae libremente no puede pasar por todas las alturas posibles, sino que va saltando, de una posición a otra mas distante sin pasar por las intermedias.
En un principio este resultado no causó gran conmoción en la comunidad científica, pues se lo consideró como un artilugio con poco asidero real.
En física, el término cuanto o quantum (del latín Quantum, plural Quanta, que representa una cantidad de algo) denotaba en la física cuántica primitiva tanto el valor mínimo que puede tomar una determinada magnitud en un sistema físico, como la mínima variación posible de este parámetro al pasar de un estado discreto a otro. Se hablaba de que una determinada magnitud estaba cuantizada según el valor de cuanto. O sea que cuanto es una proporción hecha por la magnitud dada.

Un ejemplo del modo en que algunas cantidades relevantes de un sistema físico están cuantizadas lo encontramos en el caso de la carga eléctrica de un cuerpo, que sólo puede tomar un valor que sea un múltiplo entero de la carga del electrón. En la moderna teoría cuántica aunque se sigue hablando de cuantización el término cuanto ha caído en desuso. El hecho de que las magnitudes estén cuantizadas se considera ahora un hecho secundario y menos definitorio de las caracterísitcas esenciales de la teoría.

En informática, un cuanto de tiempo es un pequeño intervalo de tiempo que se asigna a un proceso para que ejecute sus instrucciones. El cuanto es determinado por el planificador de procesos utilizando algún algoritmo de planificación.


Historia [editar]El ejemplo clásico de un cuanto procede de la descripción de la naturaleza de la luz, como la energía de la luz está cuantizada, la mínima cantidad posible de energía que puede transportar la luz sería la que proporciona un fotón (nunca se podrá transportar medio fotón). Esta fue una conclusión fundamental obtenida por Max Planck y Albert Einstein en sus descripciones de la ley de emisión de un cuerpo negro y del efecto fotoeléctrico. Otra magnitud cuantizada en física es la carga eléctrica, cuya unidad mínima es la carga del electrón, aunque por ser tan pequeña normalmente se use como una magnitud continua. La teoría de la física que describe los sistemas cuantizados se denomina mecánica cuántica. Otras magnitudes menos intuitivas también aparecen cuantizadas como el momento angular de un electrón o el spín de una partícula subatómica.

RELATIVIDAD

La teoría de la relatividad incluye tanto a la teoría de la relatividad especial como la de relatividad general, formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y elelectromagnetismo.
La teoría de la relatividad especial, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzasgravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento.
La teoría de la relatividad general, publicada en 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana, aunque coincide numéricamente con ella para campos gravitatorios débiles y "pequeñas" velocidades. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
El 7 de marzo de 2010 fueron mostrados públicamente los manuscritos originales de Einstein (de 1905) por parte de la Academia Israelí de Ciencias. El manuscrito contiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, y fue donado por Einstein a laUniversidad Hebrea de Jerusalén en 1925 con motivo de su inauguración.
Dibujo artístico sobre la teoría de la relatividad

La mecánica clásica constituye una excelente aproximación a la realidad, dentro de ciertos límites.Sin embargo en la escala microscópica, los fenómenos físicos sólo pueden estudiarse por medio de la mecánica cuántica. Y cuando se tratan velocidades muy altas, cercanas a la luminosa, se debe recurrir a la teoría de la relatividad.
La primera revolución científica del siglo XX se produjo cuando Albert Einstein (Figura 1) formuló, en 1905, la teoría de la relatividad especial. A continuación describiremos los rasgos esenciales de esta teoría.



Figura 1. Albert Einstein (1879-1955), quien formuló la teoría de la relatividad.
PRECECIBILIDAD